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Physical Problem:

,r

__________

Planar EM wave normally
incident to dielectric slab.
EM wave: windowed mi-
crowave signal.

Reflection of wave off slab
interfaces is observed.
Properties of slab described
by polarization equation



Maxwell's Equations:

VxE = _8_B

S B = B+ P
Vxi = 4T B = ol + ol
V-D = p J = J.+ Js
V-B = 0.

Quantities P, M, J describe material behavior, require constitu-
tive laws to complete. We use: M = 0,J = oE.



Debye Polarization Model:

eg(es — GOO)E
emeoﬁ -+ P.

Tﬁ—l-ﬁ
D

First order differential equation for P models permanent dipole
relaxation.

Modification of D equation allows for an instantaneous compo-
nent of polarization.

Higher order, and integral models possible as well.



Interrogation Simulation:

e Current source f(t) placed at z = 0. Symmetry makes prob-
lem one-dimensional. E = zE(z,t),H = §H(z,t). Slab occu-
pies (21,21 + d).

e Parameters (o, €0, €5, 7,d) chosen for the material slab.

e A particular form for the current source is chosen.

e ODbservations taken at z = 0 show original signal, reflection
off z1 interface, then reflection off z, interface.



Forward Problem Example: t = 1.7 ns
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Forward Problem

Example: t = 3.4 ns

300

200

100

Electric field
o

-100

-200

300 l

0.2 0.3 0.4 0.5
space (m)

0.9



Forward Problem

Example: t = 5.75 ns
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Forward Problem Example: t = 12.75 ns
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Forward Problem Example: ¢t = 18.7 ns
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Forward Problem Example: z = 0 meters
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Parameter Values:

We use the following parameter values for our examples.

o 0.0 mhos/meter
es 9S1.1

€0 5.5

r 8.1 x10°12 seconds

Except for o, these are the accepted values for water.

Interrogating Signal:

Carrier frequency f = 0.6 GHz to 2.4 GHz or an increasing fre-
quency chirp.

Windowed with rectangular or gaussian pulse.
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Identification Problem:

Given observations of the electric field at z = 0: E; = E(0,i1At),
find parameters (o, eco, €5, T, d) Which give the best fit to the data.

“Best Fit" is determined by various criteria. Generally a least-
squares distance between various transformations of the time-
domain data.
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Previous Results:

Time-domain identification of Debye model parameters.

Accurate reconstruction of eg, exo, 7 in presence of moderate noise
in signal. (< 5%).

Reconstruction of o diffucut for reasonable values. (x1072)
Easier to identify 7(es — €x0) than ecc.

Difficulty with depth estimation lead to three step identification
process:
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Effect of incorrect depth:

electric field
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Time-domain Error as a function of depth:
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Three Step Method:

Identify (7, e€s, €00) With surface reflection. Identify d through re-
turn time of deep reflection. Use as initial guess to estimate
(7, €5, €00,d) to refine estimates of all parameters.

New Distance Measures:

Distance measures based on frequency and time-frequency trans-
formations of the original and simulated data.

Frequency transform: absolute value of DFT of signal.
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Time-Frequency Transform:

The Fourier Transform

fw) = (FNw) = F(£)e™ " dt

1 o0
V27 /—oo
The Short Time Fourier Transform

(Fuf)lw,7) = Fw(t —1)e "t dt

I

w a windowing function such as the Gaussian w(t) = e~

12
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Time-frequency resolution of standard function representations.

w

Time:

F(¢)

w w

t t
Frequency: Time-frequency:

(Ff)(w) (Fwf)(w, )

(Fwf)(w, ) provides a measure of the amplitude of frequency w

at time T.
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'ime-Frequency Transform Example: 500 —
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Implementation Details:

Forward simulations done with FE-TD scheme: PW-linear el-
emets in space, Crank-Nicholson scheme in time. Implemented
in Fortran.

Optimization handled by BFGS/Trust region code (Dr. Carter,
ICASE) in Fortran.

Transforms, distance functions, data processing routines are writ-
ten as Octave scripts (free Matlab clone) with interfaces to For-
tran codes written in C++.
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J(d) in time domain for rectangular pulse
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J(d) in frequency domain for rectangular pulse
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J(d) in time-frequency domain for rectangular pulse
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J(d) in time domain for gaussian chirp
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J(d) in time-frequency domain for gaussian chirp
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Tested:

Four input signals. 40 initial parameter sets. Time and Time-
frequency distance measures. (160 runs each)

Results:
Time | Time-Frequency
Converged | 100 76
Improved on Initial Iterate 24 14
Close to Correct Parameters 11 5
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Future Work:

e EXplore time-frequency transformation options to find more
effective smoothers of the objective function.

e Determine optimal objective criteria and input signal combi-
nations for various identification problems

e Add Noise to signal. Estimate noise tolerance of inverse
problem for various objective functions and signal types.
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